The World Health Organization (WHO) estimates that 250 million children under the age of five suffer from vitamin A deficiencies (VAD). Individuals with VAD experience higher rates of mortality and increased morbidity during enteric and respiratory infections compared with those who are vitamin A sufficient. Previously, our laboratory has demonstrated that VAD mice have significantly impaired virus-specific IgA and CD8(+) T-cell responses in the airways. Here, we demonstrate that VAD mice experience enhanced cytokine/chemokine gene expression and release in the respiratory tract 10 days following virus infection compared with control vitamin A sufficient animals. Cytokines/chemokines that are reproducibly up-regulated at the gene expression and protein levels include IFNγ and IL-6. Despite previous indications that cytokine dysregulation in VAD animals might reflect low forkhead box P3 (FoxP3)-positive regulatory T-cell frequencies, we found no reduction in FoxP3(+) T cells in VAD respiratory tissues. As an alternative explanation for the high cytokine levels, we found that the extent of virus infection and the persistence of viral antigens were increased on day 10 post-infection in VAD animals compared with controls, and consequently that respiratory tract tissues had an increased potential to activate virus-specific T cells. Results encourage cautious management of viral infections in patients with VAD, as efforts to enhance FoxP3(+) T cell frequencies and quell immune effectors could potentially exacerbate disease if the virus has not been cleared.
Keywords: Treg; cytokine; parainfluenza virus; respiratory tract; vitamin A deficiency.
© The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.