Calcium-induced calcium release supports recruitment of synaptic vesicles in auditory hair cells

J Neurophysiol. 2016 Jan 1;115(1):226-39. doi: 10.1152/jn.00559.2015. Epub 2015 Oct 28.

Abstract

Hair cells from auditory and vestibular systems transmit continuous sound and balance information to the central nervous system through the release of synaptic vesicles at ribbon synapses. The high activity experienced by hair cells requires a unique mechanism to sustain recruitment and replenishment of synaptic vesicles for continuous release. Using pre- and postsynaptic electrophysiological recordings, we explored the potential contribution of calcium-induced calcium release (CICR) in modulating the recruitment of vesicles to auditory hair cell ribbon synapses. Pharmacological manipulation of CICR with agents targeting endoplasmic reticulum calcium stores reduced both spontaneous postsynaptic multiunit activity and the frequency of excitatory postsynaptic currents (EPSCs). Pharmacological treatments had no effect on hair cell resting potential or activation curves for calcium and potassium channels. However, these drugs exerted a reduction in vesicle release measured by dual-sine capacitance methods. In addition, calcium substitution by barium reduced release efficacy by delaying release onset and diminishing vesicle recruitment. Together these results demonstrate a role for calcium stores in hair cell ribbon synaptic transmission and suggest a novel contribution of CICR in hair cell vesicle recruitment. We hypothesize that calcium entry via calcium channels is tightly regulated to control timing of vesicle fusion at the synapse, whereas CICR is used to maintain a tonic calcium signal to modulate vesicle trafficking.

Keywords: Ca2+-induced Ca2+ release; dual-sine capacitance; hair cell; intracellular stores; ribbon synapse; synaptic transmission.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium Signaling*
  • Excitatory Postsynaptic Potentials*
  • Hair Cells, Auditory / metabolism*
  • Hair Cells, Auditory / physiology
  • Synaptic Vesicles / metabolism*
  • Turtles