In the present study, we investigated the roles and molecular mechanism of 10-gingerol, a phenolic compound isolated from Zingiber officinale, in regulating cell proliferation and invasion of MDA‑MB‑231 breast cancer cells. 10-gingerol treatment inhibited cell proliferation through downregulation of cell cycle regulatory proteins such as cyclin-dependent kinases and cyclins, and subsequent induction of G1 phase arrest. In addition, 10‑gingerol treatment blocked cell invasion in response to mitogenic stimulation. These antitumor activities of 10‑gingerol were mediated through inactivation of Akt and p38MAPK activity, and suppression of epidermal growth factor receptor expression. Collectively, these findings demonstrate the pharmacological roles of 10-gingerol in regulating breast cancer cell growth and progression, and suggest further evaluation and development as a potential therapeutic agent for the prevention and treatment of breast cancer.