A molecule with a π conjugated backbone built from aromatic thiophene and dialkoxyphenylene units and substituted imidazolium groups (TPO) is designed to obtain ultra-stable single walled carbon nanotube (SWCNT) dispersion in aqueous medium. The proposed mechanism of non-covalent interaction is accompanied by individualization of SWCNT and comprises of dominant nondisruptive π-π and cation-π interaction between them and the TPO conjugated oligomer. The individualization of SWCNT and dispersibility and stability of the ultra-stable suspensions were estimated using high resolution transmission electron microscopy, UV-Visible-NIR absorption spectroscopy, Raman spectroscopy, photoluminescence and zeta potential measurement. Nuclear magnetic resonance data provides direct evidence toward possible cation-π interaction.
Keywords: Charge transfer; Conjugated oligomer; Non-covalent interactions; Single walled carbon nanotube; Stable dispersion; π–π interaction.
Copyright © 2015 Elsevier Inc. All rights reserved.