Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue

Springerplus. 2015 Nov 23:4:713. doi: 10.1186/s40064-015-1509-2. eCollection 2015.

Abstract

Clinical use of adipose-derived stem cells (ASCs) for a variety of indications is rapidly expanding in medicine. Most commonly, ASCs are isolated at the point of care from lipoaspirate tissue as the stromal vascular fraction (SVF). The cells are immediately administered to the patient as an injection or used to enrich fat grafts. Isolation of ASCs from adipose tissue is a relatively simple process performed routinely in cell biology laboratories, but isolation at the point of care for immediate clinical administration requires special methodology to prevent contamination, ensure integrity of clinical research and comply with regulatory requirements. A lack of practical laboratory experience, regulatory uncertainty and a relative paucity of objective published data can make selection of the optimum separation method for specific indications a difficult task for the clinician and can discourage clinical adoption. In this paper, we discuss the processes which can be used to separate SVF cells from fat tissue. We compare the various mechanical and enzymatic methods. We discuss the practical considerations involved in selecting an appropriate method from a clinical perspective. Studies consistently show that breakdown of the extracellular matrix achieved with proteolytic enzymes affords significantly greater efficiency to the separation process. SVF isolated through mechanical methods is equally safe, less costly and less time consuming but the product contains a higher frequency of blood mononuclear cells and fewer progenitor cells. Mechanical methods can provide a low cost, rapid and simple alternative to enzymatic isolation methods, and are attractive when smaller quantities of ASCs are sufficient.