Interplay of Surface and Dirac Plasmons in Topological Insulators: The Case of Bi_{2}Se_{3}

Phys Rev Lett. 2015 Nov 20;115(21):216802. doi: 10.1103/PhysRevLett.115.216802. Epub 2015 Nov 18.

Abstract

We have investigated plasmonic excitations at the surface of Bi_{2}Se_{3}(0001) via high-resolution electron energy loss spectroscopy. For low parallel momentum transfer q_{∥}, the loss spectrum shows a distinctive feature peaked at 104 meV. This mode varies weakly with q_{∥}. The behavior of its intensity as a function of primary energy and scattering angle indicates that it is a surface plasmon. At larger momenta (q_{∥}~0.04 Å^{-1}), an additional peak, attributed to the Dirac plasmon, becomes clearly defined in the loss spectrum. Momentum-resolved loss spectra provide evidence of the mutual interaction between the surface plasmon and the Dirac plasmon of Bi_{2}Se_{3}. The proposed theoretical model accounting for the coexistence of three-dimensional doping electrons and two-dimensional Dirac fermions accurately represents the experimental observations. The results reveal novel routes for engineering plasmonic devices based on topological insulators.