Before metamorphosis, most holometabolous insects, such as the silkworm studied here, undergo a special phase called the wandering stage. Insects in this stage often display enhanced locomotor activity (ELA). ELA is vital because it ensures that the insect finds a safe and suitable place to live through the pupal stage. The physiological mechanisms of wandering behavior are still unclear. Here, we integrated proteomics and metabolomics approaches to analyze the brain of the lepidopteran insect, silkworm, at the feeding and wandering stages. Using LC-MS/MS and GC-MS, in all we identified 3004 proteins and 37 metabolites at these two stages. Among them, 465 proteins and 22 metabolites were changed. Neural signal transduction proteins and metabolites, such as neurofilament, dopaminergic synapse related proteins, and glutamic acid, were significantly altered, which suggested that active neural conduction occurred in the brain at the wandering stage. We also found decreased dopamine degradation at the wandering stage. The proposed changes in active neural conduction and increased dopamine concentration might induce ELA. In addition, proteins involved in the ubiquitin proteasome system and lysosome pathway were upregulated, revealing that the brain experiences morphological remodeling during metamorphosis. These findings yielded novel insights into the molecular mechanism underlying insect wandering behavior.
Keywords: Wandering behavior; brain; metabolomics; proteomics; silkworm.