Catenation through a Combination of Radical Templation and Ring-Closing Metathesis

J Am Chem Soc. 2015 Dec 23;137(50):15640-3. doi: 10.1021/jacs.5b10623. Epub 2015 Dec 14.

Abstract

Synthesis of an electrochemically addressable [2]catenane has been achieved following formation by templation of a [2]pseudorotaxane employing radically enhanced molecular recognition between the bisradical dication obtained on reduction of the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), and the radical cation generated on reduction of a viologen disubstituted with p-xylylene units, both carrying tetraethylene glycol chains terminated by allyl groups. This inclusion complex was subjected to olefin ring-closing metathesis, which was observed to proceed under reduced conditions, to mechanically interlock the two components. Upon oxidation, Coulombic repulsion between the positively charged and mechanically interlocked components results in the adoption of a co-conformation where the newly formed alkene resides inside the cavity of the tetracationic cyclophane. (1)H NMR spectroscopic analysis of this hexacationic [2]catenane shows a dramatic upfield shift of the resonances associated with the olefinic and allylic protons as a result of them residing inside the tetracationic component. Further analysis shows high diastereoselectivity during catenation, as only a single (Z)-isomer is formed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.