The effect of CYP2D6 genotype on the dose-exposure relationship for atomoxetine has not been well characterized in children. Children 6-17 years of age diagnosed with attention-deficit hyperactivity disorder (ADHD) were stratified by CYP2D6 genotype into groups with 0 (poor metabolizers [PMs], n = 4), 0.5 (intermediate metabolizers [IMs], n = 3), one (extensive metabolizer [EM]1, n = 8) or two (EM2, n = 8) functional alleles and administered a single 0.5 mg/kg oral dose of atomoxetine (ATX). Plasma and urine samples were collected for 24 (IM, EM1, and EM2) or 72 hours (PMs). Dose-corrected ATX systemic exposure (area under the curve [AUC]0-∞ ) varied 29.6-fold across the study cohort, ranging from 4.4 ± 2.7 μM*h in EM2s to 5.8 ± 1.7 μM*h, 16.3 ± 2.9 μM*h, and 50.2 ± 7.3 μM*h in EM1s, IMs, and PMs, respectively (P < 0.0001). Simulated steady state profiles at the maximum US Food and Drug Administration (FDA)-recommended dose suggest that most patients are unlikely to attain adequate ATX exposures. These data support the need for individualized dosing strategies for more effective use of the medication.
© 2015 American Society for Clinical Pharmacology and Therapeutics.