Endothelial E- and P-selectins mediate lymphocyte trafficking in inflammatory processes by interacting with lymphocyte selectin ligands. These are differentially expressed among different T cell subsets and function alone or in cooperation to mediate T cell adhesion. In this study, we characterize the expression and functionality of E-selectin ligands in Th type 17 lymphocytes (Th17 cells) and report that CD43 functions as a Th17 cell E-selectin ligand in vitro that mediates Th17 cell rolling on the vascular endothelium and recruitment in vivo. We demonstrate Th17 cells express CD44, P-selectin glycoprotein ligand (PSGL)-1, and CD43. Few PSGL-1(-/-)CD43(-/-) Th17 cells accumulated on E-selectin under shear flow conditions compared with wild-type cells. CD43(-/-) Th17 cell accumulation on E-selectin was impaired as compared with wild-type and PSGL-1(-/-), and similar to that observed for PSGL-1(-/-)CD43(-/-) Th17 cells, indicating that CD43 alone is a dominant ligand for E-selectin. Notably, this finding is Th17 cell subset specific because CD43 requires cooperation with PSGL-1 in Th1 cells for binding to E-selectin. In vivo, Th17 cell recruitment into the air pouch was reduced in CD43(-/-) mice in response to CCL20 or TNF-α, and intravital microscopy studies demonstrated that CD43(-/-) Th17 cells had impaired rolling on TNF-α-treated microvessels. Furthermore, CD43(-/-) mice were protected from experimental autoimmune encephalomyelitis and had impaired recruitment of Th17 cells in the spinal cord. Our findings demonstrate that CD43 is a major E-selectin ligand in Th17 cells that functions independent of PSGL-1, and they suggest that CD43 may hold promise as a therapeutic target to modulate Th17 cell recruitment.
Copyright © 2016 by The American Association of Immunologists, Inc.