Although aromatase inhibitors are standard endocrine therapy for postmenopausal women with early-stage metastatic estrogen-dependent breast cancer, they are limited by the development of drug resistance. A better understanding of this process is critical towards designing novel strategies for disease management. Previously, we demonstrated a global proteomic signature of letrozole-resistance associated with hormone-independence, enhanced cell motility and implications of epithelial mesenchymal transition (EMT). Letrozole-resistant breast cancer cells (LTLT-Ca) were treated with a novel phytoalexin, glyceollin I, and exhibited morphological characteristics synonymous with an epithelial phenotype and decreased proliferation. Letrozole-resistance increased Zinc Finger E-Box Binding Homeobox 1 (ZEB1) expression (4.51-fold), while glyceollin I treatment caused a -3.39-fold reduction. Immunofluorescence analyses resulted of glyceollin I-induced increase and decrease in E-cadherin and ZEB1, respectively. In vivo studies performed in ovariectomized, female nude mice indicated that glyceollin treated tumors stained weakly for ZEB1 and N-cadherin and strongly for E-cadherin. Compared to letrozole-sensitive cells, LTLT-Ca cells displayed enhanced motility, however in the presence of glyceollin I, exhibited a 68% and 83% decrease in invasion and migration, respectively. These effects of glyceollin I were mediated in part by inhibition of ZEB1, thus indicating therapeutic potential of glyceollin I in targeting EMT in letrozole resistant breast cancer.
Keywords: aromatase inhibitors; breast cancer; epithelial mesenchymal transition; letrozole resistance; metastasis; phytochemicals.