A novel computational modelling approach is employed to investigate the response of a population of retinal ganglion cells (RGCs) to external electrical stimulation. Current is delivered via a multi-electrode array design that would be employed in a future retinal prosthesis device being developed by our group. The RGCs are morphologically realistic and allow examination of the biophysical responses of intracellular compartments to externally applied currents. A number of stimulation paradigms are simulated including the use of monopolar, hexapolar and quasi-monopolar return paths. The model provides a powerful simulation tool to test and optimize electrical stimulation strategies for future retinal prosthesis devices.