The fatty acids composition of adipose tissue may provide information on the nutritional part of the risk or evolution of breast cancer. To determine whether (1)H NMR of adipose tissue provides information on the nature of the diet consumed, a dietary intervention with increasing percentage of polyunsaturated n-3 docosahexaenoic acid (DHA 22:6n-3, provided as DHASCO oil) was applied to a rat model of N-nitroso-N-methylurea-induced mammary tumors. Spectra of the lipid extracts were obtained from adipose tissues in five groups of Sprague-Dawley rats fed with a diet containing 7% peanut/rapeseed enriched with 8% (w/w) of an oil without (palm oil) or with low (1%), moderate (3%), or high (8%) DHASCO content. A control group received a basal diet with 15% peanut/rapeseed representative of the "Western" diet. After 5 months of those five controlled diets, adipose tissue was collected for analysis of the lipid extract using both (1)H NMR analysis on an 11.7 T spectrometer and gas chromatography considered as gold standard. (1)H NMR analysis showed a dose-dependent increase in DHA in the lipid extract of adipose tissues and a commensurate decrease in n-6 polyunsaturated fatty acids in the three DHA groups, which allowed one to follow n-6/n-3 ratio changes. The highest n-6/n-3 ratio was observed in the control Western diet group compared to the other diet groups. The integrated spectral regions showed separation between groups, thereby documenting a specific NMR lipid profile corresponding to each dietary intervention. Those diet-dependent NMR lipid profiles were consistent with that obtained with gas chromatography analyses of the same samples. This study is a proof of concept highlighting the potential use of the (1)H NMR approach to evaluate dietary intervention in biopsies of adipose tissues.
Keywords: 1H NMR spectroscopy; docosahexaenoic acid; dose−effect; lipidomics.