Information about specificity and affinity is critical for use of carbohydrate-binding antibodies. Herein, we evaluated eight monoclonal antibodies to the blood group A (BG-A) antigen. Antibodies 87-G, 9A, HE-10, HE-24, HE-193, HE-195, T36 and Z2A were profiled on a glycan microarray to assess specificity, relative affinity and the influence of glycan density on recognition. Our studies highlight several noteworthy recognition properties. First, most antibodies bound GalNAcα1-3Gal and the BG-A trisaccharide nearly as well as larger BG-A oligosaccharides. Second, several antibodies only bound the BG-A trisaccharide when displayed on certain glycan chains. These first two points indicate that the carrier glycan chains primarily influence selectivity, rather than binding strength. Third, binding of some antibodies was highly dependent on glycan density, illustrating the importance of glycan presentation for recognition. Fourth, some antibodies recognized the tumor-associated Tn antigen, and one antibody only bound the variant composed of a GalNAc-alpha-linked to a serine residue. Collectively, these results provide new insights into the recognition properties of anti-BG-A antibodies.
Keywords: Anti-glycan antibodies; blood group antigen; glycan microarray.
Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.