A prolonged (at least 2-4 hr) elevation of [Ca2+]i accompanies early T cell activation by TCR/CD3-specific ligands. Ca2+ is generally thought to be an essential second messenger for early activation, but the precise molecular events contingent upon the Ca2+ signal remain to be determined. The Ca2+ signal can be separated into an early transient peak due to InsP3-released Ca2+ from intracellular stores, and a sustained plateau due to altered transmembrane Ca2+ flux. Patch clamp studies have identified an InsP3-activated, Ca2+ permeable channel in the plasma membrane of T lymphocytes that may be responsible for the sustained elevation of [Ca2+]i during continuous TCR/CD3 occupancy. The Ca2+ signal can be further resolved at the level of the single cell into a series of repetitive oscillations between peak and trough levels with a period of 16-20 s. The oscillations may be part of a frequency-encoded signaling system. Several nonlinear internal feedback controls may contribute to the periodic nature of the Ca2+ signal: PKC-mediated phosphorylation of the CD3 gamma subunit, which is a feedback inhibitor of TCR/CD3 function; amplification of Ca2+ release from endoplasmic reticulum by a highly cooperative step in the opening of Ca2+ channels by InsP3, and Ca2+-dependent feedback enhancement of PLC function; autoregulatory negative feedback on Ca2+ influx by Ca2+, both by a direct effect on the plasma membrane Ca2+ channel and by induction of membrane hyperpolarization secondary to Ca2+-activated K+ efflux. In addition, several other internal feedback controls on TCR/CD3 function, by CD4-induced tyrosine-specific phosphorylation of the CD3 zeta subunit, or on the Ca2+ signal, by extracellular Cl- or by GM1 gangliosides, are also postulated. The question of whether a G protein couples TCR/CD3 to PI hydrolysis and to Ca2+ mobilization is unresolved, although some indirect evidence for the involvement of GTP binding proteins in T cell activation has recently been obtained with cholera toxin. There is also preliminary evidence that TCR/CD3 may structurally conform to G protein coupled receptors, i.e., having a core structure of seven alpha helical transmembrane spanning segments, a ligand recognition site, loci for regulatory phosphorylation, and a putative nucleotide binding site.