Aims: Palmitate, a common saturated free fatty acid, induces endothelial apoptosis in vitro in culture endothelial cells and in vivo in type 2 diabetes mellitus (T2DM) patients. The present study aimed to investigate whether Kv1.5 regulates palmitate-induced endothelial apoptosis and endothelial dysfunction in T2DM.
Main methods: In vitro experiments were carried out in primary human HUVECs. Apoptosis was analyzed by flow cytometry. Cell viability was determined by Cell Counting Assay Kit-8. The siRNA transfection was employed to knockdown Kv1.5 protein expression. Intracellular and mitochondrial ROS, and mitochondrial membrane potential were detected using fluorescent probes. Male C57BL/6 mice fed with high-sucrose/fat diet were injected with streptozotocin (35mg/kg body weight) to establish T2DM animal model.
Key findings: We found that palmitate-induced endothelial apoptosis was parallel to a significant increase in endogenous Kv1.5 protein expression in endothelial cells. Silencing of Kv1.5 with siRNA reduced palmitate-induced endothelial apoptosis, intracellular ROS generation, mitochondrial ROS generation and membrane potential (Δψm) alteration and cleaved caspase-3 protein expression; while increased cell viability and ratio of Bcl-2/Bax. Furthermore, we observed that Kv1.5 protein expression increased in endothelial cells of thoracic aorta of T2DM mice. Silencing of Kv1.5 significantly improved the endothelium-dependent vasodilation in thoracic aortic rings of T2DM mice.
Significance: These results demonstrate that suppression of Kv1.5 protects endothelial cells against palmitate-induced apoptosis via inhibiting mitochondria-mediated excessive ROS generation and apoptotic signaling pathway, suggesting that Kv1.5 may serve as a therapeutic target of treatment for endothelial dysfunction induced by palmitate and lipid metabolism in T2DM patients.
Keywords: Apoptosis; Endothelial cells; Kv1.5; Mitochondria; Palmitate; T2DM.
Copyright © 2016 Elsevier Inc. All rights reserved.