This work aims to investigate the effects of magnetic field strength and direction on the electronic properties and optical response of GaAs/AlGaAs-based heterostructures. An investigation of the excitonic spin-splitting of a disordered multiple quantum well embedded in a wide parabolic quantum well is presented. The results for polarization-resolved photoluminescence show that the magnetic field dependencies of the excitonic spin-splitting and photoluminescence linewidth are crucially sensitive to magnetic field orientation. Our experimental results are in good agreement with the calculated Zeeman splitting obtained by the Luttinger model, which predicts a hybridization of the spin character of states in the valence band under tilted magnetic fields.