Clinical use of quantitative cardiac perfusion PET: rationale, modalities and possible indications. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

Eur J Nucl Med Mol Imaging. 2016 Jul;43(8):1530-45. doi: 10.1007/s00259-016-3317-5. Epub 2016 Feb 5.

Abstract

Until recently, PET was regarded as a luxurious way of performing myocardial perfusion scintigraphy, with excellent image quality and diagnostic capabilities that hardly justified the additional cost and procedural effort. Quantitative perfusion PET was considered a major improvement over standard qualitative imaging, because it allows the measurement of parameters not otherwise available, but for many years its use was confined to academic and research settings. In recent years, however, several factors have contributed to the renewal of interest in quantitative perfusion PET, which has become a much more readily accessible technique due to progress in hardware and the availability of dedicated and user-friendly platforms and programs. In spite of this evolution and of the growing evidence that quantitative perfusion PET can play a role in the clinical setting, there are not yet clear indications for its clinical use. Therefore, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, decided to examine the current literature on quantitative perfusion PET to (1) evaluate the rationale for its clinical use, (2) identify the main methodological requirements, (3) identify the remaining technical difficulties, (4) define the most reliable interpretation criteria, and finally (5) tentatively delineate currently acceptable and possibly appropriate clinical indications. The present position paper must be considered as a starting point aiming to promote a wider use of quantitative perfusion PET and to encourage the conception and execution of the studies needed to definitely establish its role in clinical practice.

Keywords: Coronary flow reserve; Myocardial blood flow; Positron emission tomography.

Publication types

  • Review

MeSH terms

  • Cardiovascular System / diagnostic imaging
  • Humans
  • Image Processing, Computer-Assisted
  • Nuclear Medicine*
  • Positron-Emission Tomography / methods*
  • Radiopharmaceuticals
  • Societies, Medical*

Substances

  • Radiopharmaceuticals