The sequences coding for DNA[cytosine-N4]methyltransferases MvaI (from Micrococcus varians RFL19) and Cfr9I (from Citrobacter freundii RFL9) have been determined. The predicted methylases are proteins of 454 and 300 amino acids, respectively. Primary structure comparison of M.Cfr9I and another m4C-forming methylase, M.Pvu II, revealed extended regions of homology. The sequence comparison of the three DNA[cytosine-N4]-methylases using originally developed software revealed two conserved patterns, DPF-GSGT and TSPPY, which were found similar also to those of adenine and DNA[cytosine-C5]-methylases. These data provided a basis for global alignment and classification of DNA-methylase sequences. Structural considerations led us to suggest that the first region could be the binding site of AdoMet, while the second is thought to be directly involved in the modification of the exocyclic amino group.