The Clock'N Test as a Possible Measure of Emotions: Normative Data Collected on a Non-clinical Population

Front Behav Neurosci. 2016 Feb 5:10:8. doi: 10.3389/fnbeh.2016.00008. eCollection 2016.

Abstract

Objective: At present emotional experience and implicit emotion regulation (IER) abilities are mainly assessed though self-reports, which are subjected to several biases. The aim of the present studies was to validate the Clock'N test, a recently developed time estimation task employing emotional priming to assess implicitly emotional reactivity and IER.

Methods: In Study 1, the Clock'N test was administered to 150 healthy participants with different age, laterality and gender, in order to ascertain whether these factors affected the test results. In phase 1 participant were asked to judge the duration of seven sounds. In phase 2, before judging the duration of the same sounds, participants were presented with short arousing video-clip used as emotional priming stimuli. Time warp was calculated as the difference in time estimation between phase 2 and phase 1, and used to assess how emotions affected subjective time estimations. In study 2, a representative sample was selected to provide normative scores to be employed to assess emotional reactivity (Score 1) and IER (Score 2), and to calculate statistical cutoffs, based on the 10th and 90th score distribution percentiles.

Results: Converging with previous findings, the results of study 1 suggested that the Clock'N test can be employed to assess both emotional reactivity, as indexed by an initial time underestimation, and IER, as indexed by a progressive shift to time overestimation. No effects of gender, age and laterality were found.

Conclusions: These results suggest that the Clock'N test is adapted to assess emotional reactivity and IER. After collection of data on the test discriminant and convergent validity, this test may be employed to assess deficits in these abilities in different clinical populations.

Keywords: emotional disorders; neuropsychological test; priming effect; skin conductance; time estimation.