The present study was conducted to compare the supplementation of natural (D-α-tocopherol) and synthetic (DL-α-tocopherol acetate) vitamin E on the growth performance, meat quality, muscular antioxidant capacity and genes expression related to oxidative status of broilers. A total of 144 1 day-old Arbor Acres broiler chicks were randomly allocated into 3 groups with 6 replicates of 8 birds each. Birds were given a basal diet (control group), and basal diet supplemented with either 20 IU D-α-tocopherol or DL-α-tocopherol acetate for 42 days, respectively. The results indicated that treatments did not alter growth performance of broilers (p>0.05). Compared with the control group, concentration of α-tocopherol in the breast muscle was increased by the supplementation of vitamin E (p<0.05). In the thigh, α-tocopherol content was also enhanced by vitamin E inclusion, and this effect was more pronounced in the natural vitamin E group (p<0.05). Vitamin E supplementation increased the redness of breast (p<0.05). In the contrast, the inclusion of synthetic vitamin E decreased lightness of thigh (p<0.05). Dietary vitamin E inclusion reduced drip loss at 24 h of thigh muscle (p<0.05), and this effect was maintained for drip loss at 48 h in the natural vitamin E group (p<0.05). Broilers given diet supplemented with vitamin E showed decreased malondialdehyde (MDA) content in the breast (p<0.05). Additionally, natural rather than synthetic vitamin E reduced MDA accumulation in the thigh (p<0.05). Neither natural nor synthetic vitamin E supplementation altered muscular mRNA abundance of genes related to oxidative stress (p>0.05). It was concluded that vitamin E supplementation, especially the natural vitamin E, can enhance the retention of muscular α-tocopherol, improve meat quality and muscular antioxidant capacity of broilers.
Keywords: Broiler; D-α-tocopherol; DL-α-tocopherol Acetate; Meat Quality; Oxidative Status.