Variations in muscle glycogen storage are highly correlated with variations in meat ultimate pH (pHu), a key factor for poultry meat quality. A total of two chicken lines were divergently selected on breast pHu to understand the biological basis for variations in meat quality (i.e., the pHu- and the pHu+ lines that are characterized by a 17% difference in muscle glycogen content). The effects of this selection on bird metabolism were investigated by quantifying muscle metabolites by high-resolution NMR ((1)H and (31)P) and serum metabolites by (1)H NMR. A total of 20 and 26 discriminating metabolites between the two lines were identified by orthogonal partial least-squares discriminant analysis (OPLS-DA) in the serum and muscle, respectively. There was over-representation of carbohydrate metabolites in the serum and muscle of the pHu- line, consistent with its high level of muscle glycogen. However, the pHu+ line was characterized by markers of oxidative stress and muscle catabolism, probably because of its low level of energy substrates. After OPLS-DA multiblock analysis, a metabolic set of 15 high-confidence biomarkers was identified that could be used to predict the quality of poultry meat after validation on an independent population.
Keywords: 1H NMR; 31P NMR; biomarkers; chicken; meat quality; metabolomics; ultimate pH.