The feasibility of using a beta-lactamase fusion approach for maximizing the levels of periplasmic or membrane-bound proteins expressed in Escherichia coli was investigated. The coding region for mature TEM beta-lactamase was fused after the signal peptide and aminoterminal portion of the coding region of a weakly expressed periplasmic protein, PBP3*. The resultant plasmid was mutagenized and transformants expressing increased levels of ampicillin resistance were selected. The PBP3* gene of the unmutagenized beta-lactamase fusion plasmid, and of two mutant derivatives encoding increased ampicillin resistance, were then reassembled and the latter constructs were found to express increased levels of PBP3*. The applications of a beta-lactamase fusion approach in monitoring and optimizing levels of extracytoplasmic gene products expressed in E. coli are considered.