The endoplasmic reticulum (ER) is a prime mediator of cellular signalling due to its functions as an internal cellular store for calcium, as well as a site for synthesis of proteins and lipids. Its peripheral network of sheets and tubules facilitates calcium and lipid signalling, especially in areas of the cell that are more distant to the main cytoplasmic network. Specific membrane proteins shape the peripheral ER architecture and influence the network stability to project into restricted spaces. The signalling microdomains are anatomically separate from the cytoplasm as a whole and exhibit localized protein, ion channel and cytoskeletal element expression. Signalling can also occur between the ER and other organelles, such as the Golgi or mitochondria. Lipids made in the ER membrane can be sent to the Golgi via specialized transfer proteins and specific phospholipid synthases are enriched at ER-mitochondria junctions to more efficiently expedite phospholipid transfer. As a hub for protein and lipid synthesis, a store for intracellular calcium [Ca2+ ]i and a mediator of cellular stress, the ER is an important cellular organelle. Its ability to organize into tubules and project into restricted spaces allows for discrete and temporal signalling, which is important for cellular physiology and organism homoeostasis.
Keywords: calcium microdomains; endoplasmic reticulum; intracellular signalling; lipid transfer.
© 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.