Background: The current study was performed to investigate the effect of adenosine monophosphate (AMP) - activated protein kinase (AMPK) activation on the extracellular matrix (ECM) remodeling of pulmonary arteries in pulmonary arterial hypertension (PAH) and to address its potential mechanisms.
Material and methods: PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) into Sprague-Dawley rats. Metformin (MET) was administered to activate AMPK. Immunoblotting was used to determine the phosphorylation and expression of AMPK and expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). Gelatin zymography was performed to determine the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9.
Results: Activation of AMPK by MET significantly reduced the right ventricle systolic pressure and the right ventricular hypertrophy in MCT-induced rat PAH model, and partially inhibited the ECM remodeling of pulmonary arteries. These effects were coupled with the decrease of MMP-2/9 activity and TIMP-1 expression.
Conclusions: This study suggests that activation of AMPK benefits PAH by inhibiting ECM remodeling of pulmonary arteries. Enhancing AMPK activity might have potential value in clinical treatment of PAH.