Enzyme-assisted detection strategies of microRNAs (miRNAs) in vitro have accomplished both great sensitivity and specificity. However, low expression of miRNAs and a complex environment in cells induces big challenges for monitoring and tracking miRNAs in vivo. The work reports the attempt to carry miRNA imaging into live cells, by enzyme-aided recycling amplification. We utilize facile probes based yellow aggregation-induced emission luminogens (AIEgens) with super photostable property but without quencher, which are applied to monitor miRNAs not only from urine sample extracts (in vitro) but also in live cells (in vivo). The assay could distinguish the cancer patients' urine samples from the healthy urine due to the good specificity. Moreover, the probe showed much higher fluorescence intensity in breast cancer cells (MCF-7) (miR-21 in high expression) than that in cervical cancer cells (HeLa) and human lung fibroblast cells (HLF) (miR-21 in low expression) in more than 60 min, which showed the good performance and super photostability for the probe in vivo. As controls, another two probes with FAM/Cy3 and corresponding quenchers, respectively, could perform miRNAs detections in vitro and parts of in vivo tests but were not suitable for the long-term cell tracking due to the photobleach phenomena, which also demonstrates that the probe with AIEgens is a potential candidate for the accurate identification of cancer biomarkers.
Keywords: AIEgens; live cell; microRNA; recycling; urine specimens.