Individuals with cognitive impairment can benefit from intervention strategies like recording important information in a memory notebook. However, training individuals to use the notebook on a regular basis requires a constant delivery of reminders. In this work, we design and evaluate machine learning-based methods for providing automated reminders using a digital memory notebook interface. Specifically, we identify transition periods between activities as times to issue prompts. We consider the problem of detecting activity transitions using supervised and unsupervised machine learning techniques, and find that both techniques show promising results for detecting transition periods. We test the techniques in a scripted setting with 15 individuals. Motion sensors data is recorded and annotated as participants perform a fixed set of activities. We also test the techniques in an unscripted setting with 8 individuals. Motion sensor data is recorded as participants go about their normal daily routine. In both the scripted and unscripted settings a true positive rate of greater than 80% can be achieved while maintaining a false positive rate of less than 15%. On average, this leads to transitions being detected within 1 minute of a true transition for the scripted data and within 2 minutes of a true transition on the unscripted data.
Keywords: Activity Recognition; Change-Point Detection; Prompting Systems; Smart Environments.