Formation and persistence of DNA single- and double-strand breaks stimulated by doxorubicin, 9-deoxydoxorubicin, or 4-demethyl-6-deoxydoxorubicin in murine leukemia P388 cells were compared in relation to drug DNA affinity, cellular pharmacokinetics, and cytotoxicity. Although cellular uptake and retention and DNA affinity of the anthracycline derivatives were similar to those of the parent drug, cytotoxic potency was quite different, 9-deoxydoxorubicin being much less cytotoxic than doxorubicin, and 4-demethyl-6-deoxydoxorubicin the most effective agent. After 1-h exposure of cells to cytotoxic drug levels, the extent of DNA strand breaks produced by 4-demethyl-6-deoxydoxorubicin was greater than that produced by doxorubicin, whereas 9-deoxydoxorubicin induced very few DNA breaks. As for the parent drug, proteolytic treatment of cell lysates on the filter was needed to detect DNA cleavage produced by the analogues. A linear increase of DNA breaks was observed for 2 h following 4-demethyl-6-deoxydoxorubicin or doxorubicin addition; by contrast, DNA break levels reached a plateau after 45 min of exposure to 9-deoxydoxorubicin. DNA lesions produced by the derivatives persisted, and doxorubicin-induced DNA breaks even increased after drug removal, indicating an absence of DNA break resealing under our conditions. These observations indicate that modifications of the chromophore moiety of the anthracycline may enhance both drug cytotoxicity and specificity of drug-target interactions, and thus provide further strong evidence that the anthracycline effect on DNA integrity is a critical aspect of the mechanism of drug action.