The contribution of circulating antibody to the protection of naïve piglets against porcine epidemic diarrhea virus (PEDV) was evaluated using a passive antibody transfer model. Piglets (n = 62) derived from 6 sows were assigned to one of 6 different treatments using a randomized block design which provided for allocation of all treatments to all sows' litters. Each treatment was designed to achieve a different level of circulating anti-PEDV antibody via intraperitoneally administration of concentrated serum antibody. Piglets were orally inoculated with PEDV (USA/IN/2013/19338E, 1 x 103 TCID50 per piglet) 24 hours later and then monitored for 14 days. Piglets remained with their dam throughout the experiment. Sow milk samples, piglet fecal samples, and data on piglet clinical signs, body weight, and body temperature were collected daily. Fecal samples were tested by PEDV real-time reverse transcriptase PCR. Serum, colostrum, and milk were tested for PEDV IgG, IgA, and virus-neutralizing antibody. The data were evaluated for the effects of systemic PEDV antibody levels on growth, body temperature, fecal shedding, survival, and antibody response. The analysis showed that circulating antibody partially ameliorated the effect of PEDV infection. Specifically, antibody-positive groups returned to normal body temperature faster and demonstrated a higher rate of survivability than piglets without PEDV antibody. When combined with previous literature on PEDV, it can be concluded that both systemic antibodies and maternal secretory IgA in milk contribute to the protection of the neonatal pig against PEDV infections. Overall, the results of this experiment suggested that passively administered circulating antibodies contributed to the protection of neonatal piglets against PEDV infection.