TDRP (Testis Development-Related Protein), a nuclear factor, might play an important role in spermatogenesis. However, the molecular mechanisms of TDRP underlying these fundamental processes remain elusive. In this study, a Tdrp-deficient mouse model was generated. Fertility tests and semen analysis were performed. Tdrp-deficient mice were not significantly different from wild-type littermates in development of testes, genitourinary tract, or sperm count. Morphologically, spermatozoa of the Tdrp-deficient mice was not significantly different from the wild type. Several sperm motility indexes, i.e. the average path velocity (VAP), the straight line velocity (VSL) and the curvilinear velocity (VCL) were significantly decreased in Tdrp-deficient mice (p<0.05). The proportion of slow velocity sperm also increased significantly in the mutant mice (p<0.05). However, fertility tests showed that no significant difference inaverage offspring amount (AOA), frequency of copulatory plug (FCP), and frequency of conception (FC). Furthermore, TDRP1 could interact with PRM2, which might be the molecular mechanism of its nuclear function in spermatozoa. In conclusion, these data collectively demonstrated that Tdrp deficiency impaired the sperm motility, but Tdrp deficiency alone was not sufficient to cause male infertility in mice. Additionally, TDRP1 might participate in spermatogenes is through interaction with PRM2.
Keywords: PRM2; TDRP (Tdrp1 ); gene knockout mouse model; sperm.