Segregated water observed in a putative fish embryo cryopreservative

R Soc Open Sci. 2016 Mar 2;3(3):150655. doi: 10.1098/rsos.150655. eCollection 2016 Mar.

Abstract

Development of new cryopreservation strategies has major potential in medicine and agriculture and is critical to the conservation of endangered species that currently cannot be preserved. A critical property of any potential cryopreservative solution is its ability to prevent cell-damaging ice formation during cooling and subsequent heating. This study focuses on the freezing behaviour of promising model cryoprotective solutions. We perform neutron scattering analysis, combined with computer modelling, of the water structure after quench cooling these solutions. It is found that water in this solution forms nano-clusters encapsulated by the surrounding matrix of cryoprotectant solute molecules. We posit that these small volumes inhibit ice formation, because water does not have space for the structural relaxation required to crystallize on the timescale of the cooling process.

Keywords: common carp embryo; cryopreservative; neutron scattering; water structure.