Spectroscopic analysis of LYSO:Ce crystals

Spectrochim Acta A Mol Biomol Spectrosc. 2017 Feb 5:172:163-167. doi: 10.1016/j.saa.2016.04.019. Epub 2016 Apr 19.

Abstract

Rare earth orthosilicates are among the most widely used scintillator materials in the last decades. Particularly, lutetium-yttrium oxyorthosilicate (LYSO) is known to exhibit great potentialities in the field of radiation detectors for medical imaging. Consequently, an in-depth knowledge of the material properties is of utmost interest for the mentioned applications. In this work the spectroscopic properties of commercial cerium doped lutetium-yttrium oxyorthosilicate crystals (LYSO:Ce) were investigated by Raman spectroscopy, steady state photoluminescence, photoluminescence excitation and time resolved photoluminescence. Site selective excitation was used under steady state (325nm) and pulsed (266nm) conditions to separately investigate the temperature dependence of the 5d→4f Ce1 and Ce2 luminescence, allowing to establish the thermal quenching dependence of the Ce2 optical center. In the case of the Ce1 optical center, a luminescence quantum efficiency of 78% was obtained from 14K to room temperature with 266nm photon excitation.

Keywords: Ce; LYSO; Luminescence; Raman spectroscopy; Time resolved photoluminescence.