Osteoarthritis (OA) is a common complex disease of high public health burden. OA is characterized by the degeneration of affected joints leading to pain and reduced mobility. Over the last few years, several studies have focused on the genomic changes underpinning OA. Here, we provide a comprehensive overview of genome-wide, non-hypothesis-driven functional genomics (methylation, gene, and protein expression) studies of knee and hip OA in humans. Individual studies have generally been limited in sample size and hence power, and have differed in their approaches; nonetheless, some common themes have started to emerge, notably the role played by biological processes related to the extracellular matrix, immune response, the WNT pathway, angiogenesis, and skeletal development. Larger-scale studies and streamlined, robust methodologies will be needed to further elucidate the biological etiology of OA going forward. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1105-1110, 2016.
Keywords: functional genomics; gene expression; methylation; osteoarthritis; proteomics.
© 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.