Effects of age and sex on neuromuscular-mechanical determinants of muscle strength

Age (Dordr). 2016 Jun;38(3):57. doi: 10.1007/s11357-016-9921-2. Epub 2016 May 17.

Abstract

The aim of this study was to concurrently assess the effect of age on neuromuscular and mechanical properties in 24 young (23.6 ± 3.7 years) and 20 older (66.5 ± 3.8 years) healthy males and females. Maximal strength of knee extensors (KE) and flexors (KF), contractile rate of torque development (RTD) and neural activation of agonist-antagonist muscles (surface EMG) were examined during maximal voluntary isometric contraction (MVIC). Tissue stiffness (i.e. musculo-articular stiffness (MAS) and muscle stiffness (MS)) was examined via the free-oscillation technique, whereas muscle architecture (MA) of the vastus lateralis and subcutaneous fat were measured by ultrasonography. Males exhibited a greater age-related decline for KE (47.4 %) and KF (53.1 %) MVIC, and RTD (60.4 %) when compared to females (32.9, 42.6 and 34.0 %, respectively). Neural activation of agonist muscles during KE MVIC falls markedly with ageing; however, no age and sex effects were observed in the antagonist co-activation. MAS and MS were lower in elderly compared with young participants and in females compared with males. Regarding MA, main effects for age (young 23.0 ± 3.3 vs older 19.5 ± 2.0 mm) and sex (males 22.4 ± 3.5 vs females 20.4 ± 2.7 mm) were detected in muscle thickness. For fascicle length, there was an effect of age (young 104.6 ± 8.8 vs older 89.8 ± 10.5 mm), while for pennation angle, there was an effect of sex (males 13.3 ± 2.4 vs females 11.5 ± 1.7°). These findings suggest that both neuromuscular and mechanical declines are important contributors to the age-related loss of muscle strength/function but with some peculiar sex-related differences.

Keywords: Ageing; Muscle architecture; Muscle strength; Sex; Stiffness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Age Factors
  • Aged
  • Aging / physiology*
  • Biomechanical Phenomena
  • Electromyography
  • Female
  • Humans
  • Isometric Contraction / physiology*
  • Knee Joint / physiology*
  • Male
  • Middle Aged
  • Muscle Strength / physiology*
  • Quadriceps Muscle / physiology*
  • Sex Factors
  • Young Adult