Objective: After testing of a wearable artificial pancreas (AP) during evening and night (E/N-AP) under free-living conditions in patients with type 1 diabetes (T1D), we investigated AP during day and night (D/N-AP) for 1 month.
Research design and methods: Twenty adult patients with T1D who completed a previous randomized crossover study comparing 2-month E/N-AP versus 2-month sensor augmented pump (SAP) volunteered for 1-month D/N-AP nonrandomized extension. AP was executed by a model predictive control algorithm run by a modified smartphone wirelessly connected to a continuous glucose monitor (CGM) and insulin pump. CGM data were analyzed by intention-to-treat with percentage time-in-target (3.9-10 mmol/L) over 24 h as the primary end point.
Results: Time-in-target (mean ± SD, %) was similar over 24 h with D/N-AP versus E/N-AP: 64.7 ± 7.6 vs. 63.6 ± 9.9 (P = 0.79), and both were higher than with SAP: 59.7 ± 9.6 (P = 0.01 and P = 0.06, respectively). Time below 3.9 mmol/L was similarly and significantly reduced by D/N-AP and E/N-AP versus SAP (both P < 0.001). SD of blood glucose concentration (mmol/L) was lower with D/N-AP versus E/N-AP during whole daytime: 3.2 ± 0.6 vs. 3.4 ± 0.7 (P = 0.003), morning: 2.7 ± 0.5 vs. 3.1 ± 0.5 (P = 0.02), and afternoon: 3.3 ± 0.6 vs. 3.5 ± 0.8 (P = 0.07), and was lower with D/N-AP versus SAP over 24 h: 3.1 ± 0.5 vs. 3.3 ± 0.6 (P = 0.049). Insulin delivery (IU) over 24 h was higher with D/N-AP and SAP than with E/N-AP: 40.6 ± 15.5 and 42.3 ± 15.5 vs. 36.6 ± 11.6 (P = 0.03 and P = 0.0004, respectively).
Conclusions: D/N-AP and E/N-AP both achieved better glucose control than SAP under free-living conditions. Although time in the different glycemic ranges was similar between D/N-AP and E/N-AP, D/N-AP further reduces glucose variability.
Trial registration: ClinicalTrials.gov NCT02153190.
© 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.