Adsorption and bioaccessibility of phenanthrene on graphite and multiwalled carbon nanotubes (CNTs) were investigated in simulated gastrointestinal fluid using a passive dosing system. The saturated adsorption capacity of phenanthrene on different adsorbents follows an order of hydroxylated CNTs (H-CNTs)>carboxylated CNTs (C-CNTs)>graphitized CNTs (G-CNTs)>graphite, consistent with the order of their surface area and micropore volume. The change of phenanthrene adsorption on the adsorbents is different with the presence of pepsin (800mg/L) and bile salts (500mg/L and 5000mg/L, abbreviated as BS500 and BS5000). Both solubilization of phenanthrene by pepsin and bile salts and their competition with phenanthrene for the adsorption sites play a role. In addition, the large increase of the maximum adsorption capacity in BS5000 solution indicates an enhanced dispersion of CNTs or an exfoliation of graphite by bile salts, which consequently increases the exposed surface area. The bioaccessibility increases in pepsin and BS500 solution with a growing free phenanthrene concentration. Although the bioaccessibility of phenanthrene stalls or slightly decreases in the middle range of free phenanthrene concentration in BS5000 solution, the bioaccessibility overall is much higher than that in pepsin and BS500 solution at the same phenanthrene level. It is impossible to separate the effect of competition from dispersion (or exfoliation) at this stage, but the relative contribution of solubilization to phenanthrene desorption in pepsin and BS500 solutions was quantified, which improves our understanding of the mechanisms on bioaccessibility of adsorbed pollutants on CNTs.
Keywords: Adsorption; CNTs; Gastrointestinal fluid; Passive dosing; Solubilization.
Copyright © 2016 Elsevier B.V. All rights reserved.