Mutations in the proto-oncogene c-KIT (KIT) are found in several cancers, and the site of these mutations differs markedly between cancer types. We used site directed mutagenesis to induce KIT(559), KIT(642) and KIT(816) mutations in primary human melanocytes (PHM) and we investigated the impact of each mutation on KIT function. We studied canonical KIT-signaling pathways by immunoblotting, and we used stable isotope labeling by amino acids in cell culture (SILAC) and kinase prediction models to identify kinases differently activated in respective mutants. We validated our results with the analysis of phosphorylation levels of selected substrates for each kinase. We concluded that CK1 ε and δ are more active in cell clones harboring KIT(559) and KIT(642) mutations, whereas PAK4 is more active in clones with KIT(816) mutation. Our findings might help to develop further therapeutic options for tumors with specific KIT mutations in different domains.
Biological significance: Different types of cancers harbor mutations in the oncogene KIT. The use of small molecules inhibitors directly targeting KIT had a limited success in the treatment of patients with KIT mutant cancers. Our study describes specific phospho-proteome changes due to different KIT mutations, and provides targets of further therapeutic options.
Keywords: Kinases prediction; SILAC.
Copyright © 2016 Elsevier B.V. All rights reserved.