Smoking cessation is of current topical interest due to the significant negative health and economic impact in many countries. This study aimed to develop buccal films and wafers comprising HPMC and sodium alginate (SA) for potential use in nicotine replacement therapy via the buccal mucosa, as a cheap but effective alternative to currently used nicotine patch and chewing gum. The formulations were characterised using texture analyser (tensile and hardness, mucoadhesion), scanning electron microscopy, X-ray diffractometry, attenuated total reflection-Fourier transform infrared (ATR-FTIR), differential scanning calorimetry (DSC) and swelling capacity. Drug loaded films and wafers were characterised for content uniformity (HPLC) whilst the drug loaded wafers only were further characterised for in vitro drug dissolution. SA modified and improved the functional properties of HPMC at optimum ratio of HPMC: SA of 1.25: 0.75. Generally, both films and wafers (blank and drug loaded) were amorphous in nature which impacted on swelling and mucoadhesive performance. HPMC-SA composite wafers showed a porous internal morphology with higher mucoadhesion, swelling index and drug loading capacity compared to the HPMC-SA composite films which were non-porous. The study demonstrates the potential use of composite HPMC-SA wafers in the buccal delivery nicotine.
Keywords: Buccal delivery; Films; HPMC; Nicotine; Sodium alginate; Wafers.
Copyright © 2016 Elsevier B.V. All rights reserved.