Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers

Proteomics. 2016 Aug;16(15-16):2257-71. doi: 10.1002/pmic.201500526. Epub 2016 Jul 22.

Abstract

We describe an improved version of the data-independent acquisition (DIA) computational analysis tool DIA-Umpire, and show that it enables highly sensitive, untargeted, and direct (spectral library-free) analysis of DIA data obtained using the Orbitrap family of mass spectrometers. DIA-Umpire v2 implements an improved feature detection algorithm with two additional filters based on the isotope pattern and fractional peptide mass analysis. The targeted re-extraction step of DIA-Umpire is updated with an improved scoring function and a more robust, semiparametric mixture modeling of the resulting scores for computing posterior probabilities of correct peptide identification in a targeted setting. Using two publicly available Q Exactive DIA datasets generated using HEK-293 cells and human liver microtissues, we demonstrate that DIA-Umpire can identify similar number of peptide ions, but with better identification reproducibility between replicates and samples, as with conventional data-dependent acquisition. We further demonstrate the utility of DIA-Umpire using a series of Orbitrap Fusion DIA experiments with HeLa cell lysates profiled using conventional data-dependent acquisition and using DIA with different isolation window widths.

Keywords: Bioinformatics; Data-independent acquisition.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology / methods*
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Mass Spectrometry / methods*
  • Proteomics / methods*