Objectives: To investigate the value of expanding screening and treatment for hepatitis C virus (HCV) infection in the United States.
Study design: Discrete-time Markov model.
Methods: We modeled HCV progression and transmission to analyze the costs and benefits of investment in screening and treatment over a 20-year time horizon. Population-level parameters were estimated using National Health and Nutrition Examination Survey data and published literature. We considered 3 screening scenarios that vary in terms of clinical guidelines and physician awareness of guidelines. For each screening scenario, we modeled 3 approaches to treatment, varying the fibrosis stage of treatment initiation. Net social value was the key model outcome, calculated as the value of benefits from improved quality-adjusted survival and reduced transmission minus screening, treatment, and medical costs.
Results: Expanded screening policies generated the largest value to society. However, this value is constrained by the availability of treatment to diagnosed patients. Screening all individuals in the population generates $0.68 billion in social value if diagnosed patients are treated in fibrosis stages F3-F4 compared with $824 billion if all diagnosed patients in stages F0-F4 are treated. Moreover, increased screening generates cumulative net social value by year 8 to 9 under expanded treatment policies compared with 20 years if only patients in stages F3-F4 are treated.
Conclusions: Although increasing screening for HCV may generate some value to society, only when paired with expanded access to treatment at earlier disease stages will it produce considerable value. Such a "test and treat" strategy is likely to entail higher short-term costs but also yield the greatest social benefits.