Aim: The two-point Dixon method for magnetic resonance imaging (MRI) is commonly used to non-invasively measure fat deposition in the liver. The aim of the present study was to assess the usefulness of MRI-fat fraction (MRI-FF) using the two-point Dixon method based on the non-alcoholic fatty liver disease activity score.
Methods: This retrospective study included 106 patients who underwent liver MRI and MR spectroscopy, and 201 patients who underwent liver MRI and histological assessment. The relationship between MRI-FF and MR spectroscopy-fat fraction was used to estimate the corrected MRI-FF for hepatic multi-peaks of fat. Then, a color FF map was generated with the corrected MRI-FF based on the non-alcoholic fatty liver disease activity score. We defined FF variability as the standard deviation of FF in regions of interest. Uniformity of hepatic fat was visually graded on a three-point scale using both gray-scale and color FF maps. Confounding effects of histology (iron, inflammation and fibrosis) on corrected MRI-FF were assessed by multiple linear regression.
Results: The linear correlations between MRI-FF and MR spectroscopy-fat fraction, and between corrected MRI-FF and histological steatosis were strong (R2 = 0.90 and R2 = 0.88, respectively). Liver fat variability significantly increased with visual fat uniformity grade using both of the maps (ρ = 0.67-0.69, both P < 0.001). Hepatic iron, inflammation and fibrosis had no significant confounding effects on the corrected MRI-FF (all P > 0.05).
Conclusions: The two-point Dixon method and the gray-scale or color FF maps based on the non-alcoholic fatty liver disease activity score were useful for fat quantification in the liver of patients without severe iron deposition.
Keywords: fatty liver; magnetic resonance imaging; non-alcoholic fatty liver disease; non-alcoholic steatohepatitis.
© 2016 The Japan Society of Hepatology.