Background: Omentin-1, a novel adipocytokine mainly expressed in visceral adipose tissue, has been found to inhibit the inflammatory response and improve insulin resistance as well as other obesity-related disorders. This study investigated the association between omentin-1 expression in human epicardial adipose tissue (EAT) and coronary atherosclerosis.
Methods: Serum samples, and paired biopsies from EAT and subcutaneous adipose tissue (SAT), were obtained from patients with and without coronary artery disease (CAD, n = 28 and NCAD, n = 12, respectively) during elective cardiac surgery. Coronary angiography was performed to identify CAD presence. Serum omentin-1 and adiponectin levels were measured by ELISA. mRNA expression of omentin-1 and adiponectin was detected in adipose tissue by quantitative real-time PCR, and omentin-1 protein expression was evaluated by immunohistochemistry. Correlation and multivariate linear regression analyses were performed to determine the association between omentin-1 expression and clinical risk factors.
Results: mRNA and protein expression of omentin-1 were higher in EAT than paired SAT in patients with CAD and NCAD. Compared with NCAD patients, CAD patients had lower omentin-1 and adiponectin mRNA levels in EAT and serum levels as well as lower omentin-1 protein levels. Among patients with CAD, omentin-1 expression was lower in EAT surrounding coronary segments with stenosis than those without stenosis, in terms of mRNA and protein, whereas adiponectin mRNA level in EAT did not seem to differ between stenotic and non-stenotic coronary segments in CAD patients. In multivariate linear regression analysis, CAD was an independent predictor of EAT omentin-1 mRNA expression (beta = -0.57, 95 % CI -0.89 to -0.24; P = 0.001) and serum omentin-1 levels (beta = -0.35, 95 % CI -0.67 to -0.03; P = 0.036).
Conclusions: Circulating and EAT-derived omentin-1 levels were reduced in patients with CAD. Omentin-1 expression in patients with CAD was lower in EAT adjacent to coronary stenotic segments than non-stenotic segments.
Keywords: Atherosclerosis; Coronary artery disease; Epicardial adipose tissue; Omentin-1.