Background: Immunological knowledge on processed biological implants and mesh-prostheses is still mainly based on animal models, lacking information on the species-specific human immune response. We hypothesized that in contrast to human tissue even decellularized xenogenic specimens would lead to significant and tissue source dependent human immune reactions.
Methods: Specimens from processed allogenic and xenogenic pulmonary arteries, pericardium or dermis, were co-cultured with human peripheral blood mononuclear cells (PBMNC). Proliferative responses were measured in tritiated thymidine incorporation assays (n = 10). Stimulation indices (SI), calculated as counts-per-minute of co-cultured PBMNC divided by the cpm of basic cell proliferation, were compared.
Results: Compared to native porcine pulmonary artery tissue decellularization significantly reduced human PBMNC proliferation (mean SI: 48.7 vs. 18.0, p < 0.01), which was still higher compared to the human equivalent (SI: 0.7 vs. 1.7). Also the processed human dermal implant did not elicit immune response (SI: 1.5), whereas the decellularized and cross-linked porcine dermis lead to a significant human cell-proliferation (SI: 8.4, p < 0.01). Interestingly, both the processed human (SI: 15.2) and bovine pericardial patches (SI: 15.1) led to higher immune cell proliferation.
Conclusion: Even decellularized or cross-linked xenogenic cardiovascular and reconstructive biomaterials elicit increased human immune responses not seen in the majority of allogenic specimens tested.
Keywords: Biological mesh; Immune response; Tissue engineering.
Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.