4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth-oxy]benzene-1,2-dicarbo-nitrile: crystal structure, Hirshfeld surface analysis and energy-minimization calculations

Acta Crystallogr E Crystallogr Commun. 2016 Mar 31;72(Pt 4):563-9. doi: 10.1107/S2056989016004722. eCollection 2016 Apr 1.

Abstract

In the solid state, the title compound, C18H13N5O, adopts a conformation whereby the phenyl ring and meth-oxy-benzene-1,2-dicarbo-nitrile residue (r.m.s. deviation of the 12 non-H atoms = 0.041 Å) lie to opposite sides of the central triazolyl ring, forming dihedral angles of 79.30 (13) and 64.59 (10)°, respectively; the dihedral angle between the outer rings is 14.88 (9)°. This conformation is nearly 7 kcal mol(-1) higher in energy than the energy-minimized structure which has a syn disposition of the outer rings, enabling intra-molecular π-π inter-actions. In the crystal, methyl-ene-C-H⋯N(triazol-yl) and carbo-nitrile-N⋯π(benzene) inter-actions lead to supra-molecular chains along the a axis. Supra-molecular layers in the ab plane arise as the chains are connected by benzene-C-H⋯N(carbo-nitrile) inter-actions; layers stack with no directional inter-actions between them. The specified inter-molecular contacts along with other, weaker contributions to the supra-molecular stabilization are analysed in a Hirshfeld surface analysis.

Keywords: DFT; Hirshfeld surface; conformation; crystal structure; triazol­yl.