Unusual Features of Sodium Taurocholate Cotransporting Polypeptide as a Hepatitis B Virus Receptor

J Virol. 2016 Aug 26;90(18):8302-13. doi: 10.1128/JVI.01153-16. Print 2016 Sep 15.

Abstract

Cell culture (cc)-derived hepatitis B virus (HBV) can infect differentiated HepaRG cells, but efficient infection requires addition of polyethylene glycol (PEG) during inoculation. Identification of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor enabled ccHBV infection of NTCP reconstituted HepG2 cells, although very little hepatitis B surface antigen (HBsAg) is produced. We found infection by patient serum-derived HBV (sHBV), which required purification of viral particles through ultracentrifugation or PEG precipitation, was PEG independent and much more efficient in HepaRG cells than in HepG2/NTCP cells. In contrast to hepatitis B e antigen (HBeAg), HBsAg was not a reliable marker of productive sHBV infection at early time points. A low HBsAg/HBeAg ratio by ccHBV-infected HepG2/NTCP cells was attributable to dimethyl sulfoxide (DMSO) in culture medium, NTCP overexpression, and HBV genotype D. HepG2/NTCP cells released more viral antigens than HepG2 cells after HBV genome delivery by adeno-associated virus, and stable expression of NTCP in a ccHBV producing cell line increased viral mRNAs, proteins, replicative DNA, and covalently closed circular DNA. NTCP protein expression in HepG2/NTCP cells, despite being driven by the cytomegalovirus promoter, was markedly increased by DMSO treatment. This at least partly explains ability of DMSO to promote ccHBV infection in such cell lines. In conclusion, NTCP appeared inefficient to mediate infection by serum-derived HBV. It could promote HBV RNA transcription while inhibiting HBsAg secretion. Efficient PEG-independent sHBV infection of HepaRG cells permits comparative studies of diverse clinical HBV isolates and will help identify additional factors on virion surface promoting attachment to hepatocytes.

Importance: Currently in vitro infection with hepatitis B virus (HBV) depends on cell culture-derived HBV inoculated in the presence of polyethylene glycol. We found patient serum-derived HBV could efficiently infect differentiated HepaRG cells independent of polyethylene glycol, which represents a more physiological infection system. Serum-derived HBV has poor infectivity in HepG2 cells reconstituted with sodium taurocholate cotransporting polypeptide (NTCP), the currently accepted HBV receptor. Moreover, HepG2/NTCP cells secreted very little hepatitis B surface antigen after infection with cell culture-derived HBV, which was attributed to NTCP overexpression, genotype D virus, and dimethyl sulfoxide added to culture medium. NTCP could promote HBV RNA transcription, protein expression, and DNA replication in HepG2 cells stably transfected with HBV DNA, while dimethyl sulfoxide could increase NTCP protein level despite transcriptional control by a cytomegalovirus promoter. Therefore, this study revealed several unusual features of NTCP as an HBV receptor and established conditions for efficient serum virus infection in vitro.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Cell Line
  • DNA, Viral / biosynthesis
  • Hepatitis B Antigens / biosynthesis
  • Hepatitis B virus / physiology*
  • Hepatocytes / virology*
  • Humans
  • Organic Anion Transporters, Sodium-Dependent / metabolism*
  • RNA, Messenger / biosynthesis
  • RNA, Viral / biosynthesis
  • Receptors, Virus / metabolism*
  • Symporters / metabolism*
  • Virus Attachment*
  • Virus Release

Substances

  • DNA, Viral
  • Hepatitis B Antigens
  • Organic Anion Transporters, Sodium-Dependent
  • RNA, Messenger
  • RNA, Viral
  • Receptors, Virus
  • Symporters
  • sodium-bile acid cotransporter