Background & aims: Type I interferons (IFN) provide the first line of defense against invading pathogens but its mechanism of action is still not well understood. Using unbiased genome-wide siRNA screens, we recently identified IQ-motif containing GTPase activating protein 2 (IQGAP2), a tumor suppressor predominantly expressed in the liver, as a novel gene putatively required for IFN antiviral response against hepatitis C virus (HCV) infection. Here we sought to characterize IQGAP2 role in IFN response.
Methods: We used transient small interfering RNA knockdown strategy in hepatic cell lines highly permissive to JFH1 strain of HCV infection.
Results: We found that IQGAP2 acts downstream of IFN binding to its receptor, and independently of the JAK-STAT pathway, by physically interacting with RelA (also known as p65), a subunit of the NF-κB transcription factor. Interestingly, our data reveal a mechanism distinct from the well-characterized role of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in IFN production. Indeed, IFN alone was sufficient to stimulate NF-κB-dependent transcription in the absence of viral infection. Finally, both IQGAP2 and RelA were required for the induction by IFN of a subset of IFN-stimulated genes (ISG) with known antiviral properties.
Conclusions: Our data identify a novel function for IQGAP2 in IFN antiviral response in hepatoma cells. We demonstrate the involvement of IQGAP2 in regulating ISG induction by IFN in an NF-κB-dependent manner. The IQGAP2 pathway may provide new targets for antiviral strategies in the liver, and may have a wider therapeutic implication in other disease pathogeneses driven by NF-κB activation.
Lay summary: In this study, we identify a novel mechanism of action of interferon involving the IQGAP2 protein and the NF-κB pathway that is ultimately protective against hepatitis C virus infection. This newly identified pathway functions independently of the well-known STAT pathway and may therefore provide new targets for antiviral strategies in the liver.
Keywords: Antiviral response; Hepatitis C virus (HCV); IQGAP protein.
Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.