Towards the knowledge-based design of universal influenza epitope ensemble vaccines

Bioinformatics. 2016 Nov 1;32(21):3233-3239. doi: 10.1093/bioinformatics/btw399. Epub 2016 Jul 10.

Abstract

Motivation: Influenza A viral heterogeneity remains a significant threat due to unpredictable antigenic drift in seasonal influenza and antigenic shifts caused by the emergence of novel subtypes. Annual review of multivalent influenza vaccines targets strains of influenza A and B likely to be predominant in future influenza seasons. This does not induce broad, cross protective immunity against emergent subtypes. Better strategies are needed to prevent future pandemics. Cross-protection can be achieved by activating CD8+ and CD4+ T cells against highly conserved regions of the influenza genome. We combine available experimental data with informatics-based immunological predictions to help design vaccines potentially able to induce cross-protective T-cells against multiple influenza subtypes.

Results: To exemplify our approach we designed two epitope ensemble vaccines comprising highly conserved and experimentally verified immunogenic influenza A epitopes as putative non-seasonal influenza vaccines; one specifically targets the US population and the other is a universal vaccine. The USA-specific vaccine comprised 6 CD8+ T cell epitopes (GILGFVFTL, FMYSDFHFI, GMDPRMCSL, SVKEKDMTK, FYIQMCTEL, DTVNRTHQY) and 3 CD4+ epitopes (KGILGFVFTLTVPSE, EYIMKGVYINTALLN, ILGFVFTLTVPSERG). The universal vaccine comprised 8 CD8+ epitopes: (FMYSDFHFI, GILGFVFTL, ILRGSVAHK, FYIQMCTEL, ILKGKFQTA, YYLEKANKI, VSDGGPNLY, YSHGTGTGY) and the same 3 CD4+ epitopes. Our USA-specific vaccine has a population protection coverage (portion of the population potentially responsive to one or more component epitopes of the vaccine, PPC) of over 96 and 95% coverage of observed influenza subtypes. The universal vaccine has a PPC value of over 97 and 88% coverage of observed subtypes.

Availability and implementation: http://imed.med.ucm.es/Tools/episopt.html CONTACT: d.r.flower@aston.ac.uk.

MeSH terms

  • CD4-Positive T-Lymphocytes
  • Computer Simulation*
  • Epitopes, T-Lymphocyte
  • Humans
  • Immunogenetics
  • Influenza A virus / immunology*
  • Influenza Vaccines*
  • Influenza, Human / immunology
  • Influenza, Human / prevention & control*

Substances

  • Epitopes, T-Lymphocyte
  • Influenza Vaccines