The cortical actin network is a tight array of filaments located beneath the plasma membrane. In neurosecretory cells, secretory vesicles are recruited on this network via a small insert isoform of myosin VI in a Ca(2+)-dependent manner. Upon secretagogue stimulation, myosin II mediates a relaxation of the actin network leading to synchronous translocation of bound or caged vesicles to the plasma membrane where they undergo exocytosis. F-actin is also recruited to secretory sites, where structural changes are detected immediately preceding and following exocytic events. Here we examine the mechanism underpinning the astonishing multifunctionality of this network in the various stages of vesicular exocytosis and compensatory bulk endocytosis. We propose a theoretical framework incorporating critical roles of the actin network in coupling these processes.
Keywords: cortical actin network; exocytosis–endocytosis coupling; myosin II; myosin VI; neurosecretory cells; secretory vesicles.
Copyright © 2016 Elsevier Ltd. All rights reserved.