Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing

Chem Commun (Camb). 2016 Sep 21;52(73):10948-51. doi: 10.1039/c6cc05910d. Epub 2016 Aug 17.

Abstract

Multi-response, multi-function and high integration are the critical pursuits of advanced electronic wearable sensors. Graphene aerogel endows a three-dimensional (3D) deformation morphology with excellent flexible wearable electronics of sheeted graphene. Here we report the fabrication of a neat graphene aerogel with micro extrusion printing to electronic sensor devices with a 3D nanostructure. The printed neat graphene patterns have excellent conductivity and the controllable 3D nanostructure of graphene aerogel contributes multi-dimensional deformation responses, which are appropriately suitable for the multi-recognition flexible wearable electric sensor. With complicated movement perception, the printed graphene aerogel sensors run the remarkable gesture language analysis for a deaf-mute communication auxiliary device or gesture manipulation apparatuses.