Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice

Clin Interv Aging. 2016 Jul 29:11:1017-26. doi: 10.2147/CIA.S107734. eCollection 2016.

Abstract

Background: Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-related wound healing are necessary in order to stimulate repair.

Objective: Several traditional plant extracts are well-known for their properties of skin protection and care. Piper cambodianum P. Fourn. (PPF), a member of Piperacecae, is a plant found in Vietnam that might have therapeutic properties. Therefore, the effects of PPF stem and leaf extract on aging process were investigated in vitro and in vivo.

Methods: PPF extract dissolved in methanol was investigated using Western blotting, real-time quantitative reverse transcription-polymerase chain reaction, flow cytometry, and cell wound-healing assays. We assessed the anti-aging effect of PPF in mouse using the wound-healing assay. The results were analyzed by Student's unpaired t-test; *P<0.05 and **P<0.01 were considered to indicate significant and highly significant values, respectively, compared with corresponding controls.

Results: PPF treatment demonstrated in vitro and in vivo anti-aging activity. Western blot analysis of PPF-treated normal human dermal fibroblast cells showed a dose-dependent increase in the expression of extracellular matrix genes such as collagen and elastin, but decreased expression of the aging gene matrix metalloproteinase-3. Quantitative polymerase chain reaction showed that PPF-treated cells displayed dose-dependent increase in messenger RNA expression levels of collagen, elastin, and hyaluronan synthase-2 and decreased expression levels of matrix metalloproteinase-1 aging gene. PPF treatment led to decreased production of reactive oxygen species in cells subjected to ultraviolet irradiation. Furthermore, PPF extract showed positive wound-healing effects in mice.

Conclusion: This study demonstrated the anti-aging and wound-healing effects of PPF extract. Therefore, PPF extract represents a promising new therapeutic agent for anti-aging and wound-healing treatments.

Keywords: PPF extract; ROS; anti-aging; antioxidant; normal human dermal fibroblasts; wound healing.

MeSH terms

  • Animals
  • Antioxidants / pharmacology*
  • Cell Proliferation / drug effects
  • Cells, Cultured
  • Collagen / genetics
  • Elastin / genetics
  • Extracellular Matrix / drug effects
  • Fibroblasts / drug effects*
  • Humans
  • Matrix Metalloproteinase 1 / genetics
  • Matrix Metalloproteinase 3 / genetics
  • Mice
  • Piper / chemistry*
  • Plant Extracts / pharmacology*
  • Reactive Oxygen Species / metabolism
  • Skin Aging / drug effects*
  • Wound Healing / drug effects*

Substances

  • Antioxidants
  • Plant Extracts
  • Reactive Oxygen Species
  • Collagen
  • Elastin
  • MMP3 protein, human
  • Matrix Metalloproteinase 3
  • MMP1 protein, human
  • Matrix Metalloproteinase 1